

CONSTRUINDO CONHECIMENTOS PARA A REDUÇÃO DAS DESIGUALDADES

1 A 5 DE OUTUBRO DE 2018

Marque	a opção	do tipo	de tra	balho	que está	inscrevend	o:

(x) Resumo

) Relato de Caso

CITO E GENOTOXICIDADE DO CORANTE CARAMELO IV

AUTOR PRINCIPAL: Lisiane Siqueira
CO-AUTORES: Vinícius Silva de Andrade
ORIENTADOR: Carmen Silvia Busin

UNIVERSIDADE: Universidade de Passo Fundo

INTRODUÇÃO

Corantes artificiais são aditivos sem valor nutritivo, introduzidos nos alimentos para intensificar e/ou restaurar a cor, tornando-os mais atrativos. Dentre os corantes permitidos na indústria de alimentos, o Caramelo IV ocupa lugar de destaque, sendo um dos mais utilizados. Possui em sua fórmula a substância 4-metilimidazol que o National Toxicology Program (2007) identificou como causador de câncer de pulmão em camundongos e, leucemia em ratos. A Anvisa (2015) estabelece que a ingestão diária aceitável para este corante é de 200 mg/kg p.c. Para avaliar o potencial de cito e genotoxicidade de diferentes substâncias, vários tipos de testes e de organismos teste são utilizados, sendo o teste *Allium cepa* bem difundido e amplamente utilizados pela boa correlação gênica com os seres humanos. O objetivo de nosso trabalho foi avaliar a genotoxicidade do corante Caramelo IV em duas concentrações, pelo teste *A. cepa*.

DESENVOLVIMENTO:

Foram utilizados cinco bulbos de A. cepa para cada uma das concentrações de: 300 µg/mL, 600 µg/mL e 1200 µg/mL do corante Caramelo IV, além do controle negativo com água e do controle positivo com 0,6 µg/mL de CuSO4. As cebolas tiveram seus bulbos imersos por 24 horas em água, posteriormente, na mesma água, foram adicionadas as três concentrações do corante e do CuSO4. Após 48 horas, quatro raízes por bulbo, foram medidas e coletadas para retiradas das regiões meristemáticas que foram armazenadas em fixador Carnoy por 12 horas. A seguir, as raízes foram colocadas em álcool 70% a 8° C por 24 horas e, após esse período, foram hidrolisadas com uma

CONSTRUINDO CONHECIMENTOS PARA A REDUÇÃO DAS DESIGUALDADES

1 A 5 DE OUTUBRO DE 2018

solução de ácido clorídrico 5% durante 8 minutos a 60°C. O processo seguinte foi à maceração das mesmas e montagem das lâminas histológicas, que foram coradas com orceína acética a 2% e analisadas em microscopia fotônica, no aumento de 1000X. A análise da citotoxicidade foi realizada a partir do comprimento médio das raízes (CMR) e o índice mitótico (IM). Para análise da atividade genotóxica, foram consideradas alterações cromossômicas durante a divisão mitótica do tecido meristemático das raízes (IA). Tanto na avaliação de citotoxicidade como a de genotoxicidade, foram analisadas mil células por tratamento. O IM, quando comparado ao do controle negativo, não apresentou diferença entre as concentrações. O controle negativo apresentou maior crescimento médio das raízes quando comparado com o crescimento das raízes submetidas às diferentes concentrações do Caramelo IV, porém entre as concentrações não houve variação significativa. O IA nas diferentes concentrações do corante, quando comparadas ao controle negativo, foram consideradas significativas. Porém, comparando os resultados das diferentes concentrações entre si, não houve diferenças significativas (Tab. 1). A IM mais frequente foi a anáfase com perda cromossômica, não aparecendo apenas no controle negativo (Fig. 1). O teste A. cepa realizado com o corante Caramelo IV, nas concentrações de 300 μg/mL, 600 μg/mL e 1.200 μg/mL, apresentou aumento no número de divisões celulares, que segundo Leme e Marin-Morales (2009) sugere crescimento exagerado do tecido, revelando o efeito citotóxico. O efeito genotóxico foi evidenciado, nas três concentrações do corante caramelo IV testadas em nosso experimento.

CONSIDERAÇÕE S FINAIS:

Considerando que os níveis do corante Caramelo IV aceitos no Brasil são superiores aos de outros países, alertamos para danos cito e genotóxicos causados pelo consumo exagerado a diferentes produtos que contenham esse aditivo alimentar.

REFERÊNCIAS

ANVISA, Agência Nacional de Vigilância Sanitária. Classificação dos corantes caramelos II, III e IV e dos demais corantes autorizados para uso em alimentos. Informe Técnico n° 68, 2015.

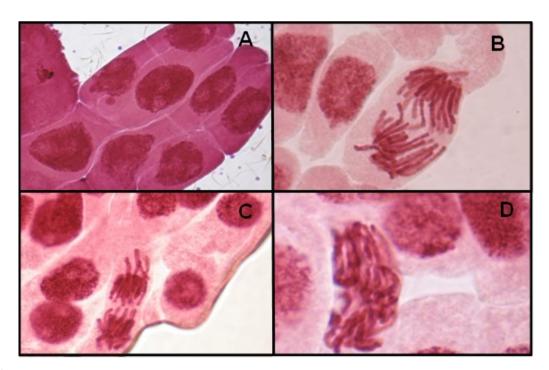
BAGATINI, M. D.; SILVA, A. C. F; TEDESCO, S. B. Uso do sistema teste de Allium cepa como bioindicador de genotoxicidade de infusões de plantas medicinais. Revista Brasileira de Farmacognosia, v.17, n.3, p.444-447, 2007.

LEME, D. M.; MARIN-MORALES, M. A. Allium cepa test in environmental monitoring: A review on its application. Mutation Research, v.682, n.1, p.71-81, 2009.

National Toxicology Program. Toxicology and carcinogenesis studies of 4-Methylimidazole in F344/N rats and B6C3F1 mice. Research Triangle Park, NC (US): 2007.

CONSTRUINDO CONHECIMENTOS PARA A REDUÇÃO DAS DESIGUALDADES

1 A 5 DE OUTUBRO DE 2018



ANEXOS

Tabela 1 - Comprimento médio e índice mitótico das raízes e alterações cromossômicas observadas nas células de *A. cepa* expostos as diferentes concentrações do corante Caramelo IV.

		CONCENTRAÇÕES					
		CN	СР	300 μg/	600 μg/	1200	
				mL	mL	μg/mL	
CITOTOXICIDADE	Comprimento das raízes	26,07	10,29	17,49	19,54	15,78	
	Índice mitótico	6,54	5,6	6,82	7,04	7,44	
GENOTOXICIDAD E	Anáfase com perda cromossômica	0	51	30	51	50	
	Atraso anafásico	1	0	0	0	0	
	Metáfase com aderência cromossômica	0	31	25	42	23	
	Pontes cromossômica	2	0	0	0	0	
	Micronúcleo	0	0	1	0	0	

CN: controle negativo; CP: controle positivo.

Figura 1 - Células de A. cepa coradas com orceína acética a 2%. A: Micronúcleo, B: anáfase com pontes cromossômicas. C: Anáfase com perdas cromossômicas. D: Metáfase com aderência.